Reduced storage nodal discontinuous Galerkin methods on semi-structured prismatic meshes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nodal discontinuous Galerkin methods on graphics processors

Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in...

متن کامل

hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes

Abstract. We present a new hp-version space-time discontinuous Galerkin (dG) finite element method for the numerical approximation of parabolic evolution equations on general spatial meshes consisting of polygonal/polyhedral (polytopic) elements, giving rise to prismatic space-time elements. A key feature of the proposed method is the use of space-time elemental polynomial bases of total degree...

متن کامل

Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes

This paper, as the sequel to previous work, develops numerical schemes for fractional diffusion equations on a two-dimensional finite domain with triangular meshes. We adopt the nodal discontinuous Galerkin methods for the full spatial discretization by the use of high-order nodal basis, employing multivariate Lagrange polynomials defined on the triangles. Stability analysis and error estimates...

متن کامل

Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservati...

متن کامل

Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes

We study a class of symmetric discontinuous Galerkin methods on graded meshes. Optimal order error estimates are derived in both the energy norm and the L2 norm, and we establish the uniform convergence of V -cycle, F -cycle and W -cycle multigrid algorithms for the resulting discrete problems. Numerical results that confirm the theoretical results are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2017

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2017.01.010